вторник, 3 декабря 2013 г.

Теорема о площади ортогональной проекции многоугольника (с доказательством).

 Теорема о площади ортогональной проекции многоугольника (с доказательством).

Теорема 

Площадь ортогональной проекции многоугольника на плоскость равна произведению его площади на косинус угла между плоскостью многоугольника и плоскостью проекции. 

Площадь ортогональной проекции многоугольника 

Доказательство. 

Пусть есть треугольник ABC и его проекция ABC1 на плоскость α. Проведем высоту CD треугольника ABC. По теореме о трех перпендикулярах отрезок C1D – высота треугольника ABC1. Угол CDC1 равен углу φ между плоскостью треугольника ABC и плоскостью проекции α. 

формулы площади 

Следовательно, для треугольника теорема верна. 
Пусть теперь есть многоугольник ABCD. Разобьем его на треугольники. Каждый треугольник, у которого нет стороны, параллельной плоскости проекции, разобьем на два треугольника с общей стороной, параллельной плоскости проекции. Получаем что для каждого треугольника Δ и его проекции Δ` в плоскости α верно равенство 

формулы площади 

Сложим все эти равенства почленно. Получим 

формулы площади 

Теорема доказана.